A GLOSSARY OF MACGRAM TERMS

Copyright (C) 1982
By The Loglan Institute, Inc.
Prepared by JCB.

Actual Parse. The parse produced by the Parser (in the narrow sense, g.v.) in

the present machine grammar of Loglan. Often abbreviated as 'AP', the

. Actual Parse is listed on the 3rd line of the Corpus entries. The AP

" often contains "inhuman® features like machine lexemes (g.v.), implicit
punctuators (q.v.), decompounded CpDs (gq.v.), and the numerous
pParentheses occasioned by these machine-oriented details. So the AP is
often difficult to read, and may be thought of as the parse of an
utterance in "machine Loglan", g.v. The HAP, or Humanized Actual Parse
{g.v.), of a specimen is usually much easier to read and may be thought
of as a parse of the corresponding utterance in "human Loglan", q.v.

allogram. The allograms of a grameme are the right-halves of all the grammar
rules having that grameme as their left-half; see 'grameme'. Thus,
allograms are equally permissible (i.e., grammatical) ways of
"expressing® a grameme, that is, of expanding it (Q.v.) when generating
an utterance, or of reducing it (3.v.) when parsing one. Replacing the
expression of one allogram by that of another of the same grameme in an
utterance--replacing, say, a noun phrase by a pronoun in an English
sentence--will of course often alter the grammatical structure, or
parse (q.v.), of that utterance. But it will not change its
grammaticality, g.v. Thus, interchanging allograms conserves
grammaticality, just as interchanging allolexes conserves grammatical
structure; see 'allolex'. (What we have here been calling "allograms"
are sometimes called "alternates” by computer scientists, or more
usually "the right sides of productions®, or simply "right sides".)

allolex. The allolexes of a lexeme are the members of the set of grammatically
equivalent words that comprise it; see 'lexeme'. Since a2ll the
allolexes of a lexeme are grammatically interchangeable, they are in a
certain sense semantic variations within a common “"structural meaning”.
Thus, replacing one connective by another in an English sentence--e.q.,
'and' for 'or', when unaccompanied by 'both' or ‘either'--will change
its specific meaning. But the structural meaning has not changed: a
"connection™ has still taken place. So the substitution of one allolex
for another (of the same lexeme) in an utterance will not alter its
"grammatical structure”, or parse, g.v. In natural languages words
often belong to several lexemes. For example, many English verbs
(e.g., 'bank', 'race', 'parse') may also be used as nouns; and vice
versa ('dog', 'milk®, 'bucket'). But in Loglan, lexemic boundaries do
not overlap. So each Loglan word is an allolex of exactly one lexeme.
The concept of allolex is parallel on the grammatical level to that of
allophone on the phonological level (phonemically equivalent sounds)
and to that of allomorph on the morphological level (semantically
equivalent phoneme-sequences...for example, the varieties of the
English plural morpheme, or the various combining forms of a primitive
bPredicate in Loglan; see 'morpheme'). See 'allogram' for a similarly
parallel notion on the level of "grammaticality".

ambiguous. A grammar from which more than one parse-tree (g.v.) can be



GLOSSARY

constructed for the same utterance is said to be ambiguous. Ambiguous
grammars may, however, be "disambiguated" (g.v.) by using special
auxiliary rules, principally “"precedence rules" (q.v.), which will
cause the parsers generated from such grammars always to select exactly
one parse-tree for each utterance. In general, ambiguous grammars
which have been disambiguated in this way are shorter, easier to
understand, and yield parsers that run faster, than grammars of the
same language which are unambiguous without such rules. The present
grammar of Loglan is of the disambiguated type in that 7 potential
"shift/reduce" conflicts (g.v.) exist among its rules. But these
conflicts are never realized because the parsers constructed
automatically by Yacc (g.v.) always select the "shift® over the
"reduce" action in such cases unless instructed otherwise; see
'lookahead' for a description of these actions of a parser. It is this
default action by Yacc that constitutes the disambiguating rule. It
turns out that in all 7 cases in which this rule is applied, the "shift
over reduce®™ action is exactly the one we want the Parser to take in
order to construct a "humanoid"™ (q.v.) parse.

AP. An acronym for ‘'Actual Parse', q.v.

arg. An abbreviation of 'argument' (q.v.) used descriptively. ‘arg' is also
the name of a grameme in the current grammar, but 'args' is not.

argset. The name of a grameme in the current grammar. The possible
expressions (g.v.) of argset are (i) a string of one or more arguments
following a predicate expression, (ii) such a string plus a following
comma gu, (iii) a gu following an argumentless predicate expression,
i.e., one which could take arguments but doesn't, and (iv) nothing at
all following just such an argumentless predicate expression. This is
not, of course, what we would normally mean by 'argument set' (qg.v.) in
English; for in describing things in English we do not normally mean to
include null instances of them. argset and its constituent grameme
argsetl thus comprise a powerful but subtle set of rules for handling
commas in Loglan; see p.ll of the Grammar for these rules.

argument. (1) The arguments of an utterance are its designations. (2) The
arguments of a predicate (g.v.) are the designations of the one or more
"objects" (in the widest possible sense) related by that predicate in
some way. 'Argument' thus has the combined force of 'Subject’,
'Object' and 'Object of Preposition' in traditional grammar. Both
‘argument' and 'arguments' are also grameme names.

argument set. A descriptive phrase meaning a string of one or more arguments
of the same predicate expression, g.v. When an argument set follows a
predicate expression, the string is assumed to be composed of sutori
(i.e., second or subsequent) arguments of that predicate and to
commence with its second argument. But see 'shifted arguments' for the
interpretation of argument sets in other positions. 1In the current
grammar all.argument sets are expressions of the arguments grameme; but
only those following their predicates are expressions of argset, q.v.

arguments, shifted. See 'shifted arguments'.

attitudinal. A word that expresses some "attitude"” of the speaker toward what
he's saying: a certainty; a wish; an injunction; a request; etc. All
attitudinals are members of the UI-Lexeme.



GLOSSARY

C, C-. Abbreviations of 'consonant'; used either in morphological formulas,
or as a prefix, e.g., as in 'C-final'. But see 'C-conn’ below.

C-conn. An abbreviation of 'causal connective'; contrasts with 'L-conn',
'logical connective'.

Carter-vocs. An abbreviation of 'Carter-vocatives'. These vocatives (gq.v.)
are formed by substituting the vocative operator loi for the
descriptive operator of ordinary descriptions, and were first suggested
by James Carter. Thus Loi Ganfua go Redro nu Herfa ('O Lady with the
Red Hairl!') is a Carter-voc. These odd expressions require very
special grammatical treatment by a machine grammar, much of it handled
by its Preparser, q.v. Not all of the extensive apparatus required is
yet installed.

close-binding. Any operator is said to be close-binding when its scope is
limited to the next following predicate word. Thus in Da pa no preda
prede, the scope of the negative is limited to preda; but in Da no pa
preda prede, the no is no longer close-bound because it now shares the
long scope of the operator pa.

close-bound. An operator in a context in which it is "close-binding", q.v.

complex. An abbreviation of 'complex predicate'. (1) Any Loglan predicate
word is said to be complex if and only if it is composed of a string of
two or more morphemes (g.v.), or combining forms, at least the last of
which is, or is derived from, a primitive predicate. E.g., mormao =
mor + mao, in which mor is an allomorph of morto = 'dead', and mao is
an allomorph of madzo = 'make'. :Hence mormao is a complex predicate.
(2) As a noun, a complex is any of the complex predicates of Loglan.

compound. An abbreviation of 'compound little word'. (1) Any Loglan little
word (qg.v.) is said to to be compound if it is composed of a string of
two or more simple little words; e.g., nahu = na + hu meaning ‘'at' +
'what (time)?' = 'when?'. '(2) As a noun, any of the compound "little"
words of Loglan even if very long, e.g., pacenoinacenoifa. (3) As a
verb, to form such a compound; in particular, the action of the
Resolver (g.v.) in identifying a string of LWs in the speech-flow as
constituting such a CPD, or, as in "recompounding" (q.v.), the action
of the Postparser in reassembling a CPD which has been broken up by the
Preparser for the Parser.

conflict-free. A grammar is said (by Yacc, for example) to be conflict-free
if, in every state in which its LR parser (q.v.) might find itself,
exactly one action is possible; see 'lookahead' for a brief account of
the "actions™ of an LR parser. The current Trial.l9 grammar of Loglan
is not conflict-free; but see the entries for 'ambiguous' and 'Yacc'.

conn. In these notes, an abbreviation of 'connective'. Often hyhenated as in
'L-conn' and 'C-conn', the logical and causal connectives.

context-free. A phrase-structure grammar (g.v.) is said to be context-free if
all of its grammar rules (g.v.) have left-halves that consist of
exactly one grameme, g.v. The current grammar of Loglan is a context-
free phrase-structure grammar. In fact nearly all the classes of
grammars which are well-understood, and so, useful in computer science,



GLOSSARY

are context-free. An example of a "context-sensitive" grammar rule is
one in which an element C appears in both the left- and the right-
halves of the rule, thus providing a "context" for the application of
the rule. The computational problems presented by grammars containing
such rules are apparently still intractable. Fortunately, the grammar
of "machine Loglan" (q.v.) can easily be written in context-free form.

CPD, CPDing/ed. Abbreviations of 'compound' (q.v.), 'compounding' and
'compounded* .

CPX. An abbreviation of ‘'complex', q.v.

de-localizer. The little word gi, an optional left-mark (q.v.) of any modifier.
When marked with gi, such a modifier is to be taken as an utterance
modifier--that is, heard as modifying the utterance as a whole--despite
its local grammatical attachment to the immediately preceding word.

decompounding. The action of the Preparser in breaking up sequences of little
words which constitute compound words in human Loglan (g.v.) but which
must be treated as strings of separate words--actually, as strings of
lexemes (g.v.)--by the Parser. Aan example is raba, the universal
quantifier. The Preparser breaks up such words; lexes them (g.v.); and
hands the Parser a string of lexemes as the representation of each such
word; in the case of raba, RA DA. It would be easy to write a grammar
that did not require decompounding. Such a grammar would provide
"tracks" for words like raba to move through the grammar as "special
cases". But such a grammar would be much longer, require many more
lexemes, and the added detail would be uninteresting. To decompound
some but not all compound words--in particular, not those compound
words which, like number-words and compound tenses, behave grammati-
cally exactly like some simple little words--seems the better strategy.
All decompounded words are recompounded (g.v.) by the Postparser.

deCPDing/ed. Abbreviations of 'decomounding' and 'decompounded’ .

derivation. A word used in computer science to denote a sequence of strings,
each composed of gramemes and/or lexemes (g.v.), such that each string
(except the first) may be obtained from the preceding string by the
application of some grammar rule (q.v.) of some grammar. If the first
string is the Initial Grameme (qg.v.) of that grammar, and the last
string in the sequence is composed entirely of lexemes, then the
sequence is said to be a "derivation of that utterance (in lexemic
representation) by that grammar". But if we allow the grammar rules to
be applied in any order, there will usually be many possible
derivations of the longer utterances of any lanquage of reasonable
size. Only some of these derivations will be interesting, in the sense
of describing possible performances of constructible parsers (g.v.)
and/or generators (g.v.) of that language. So we are usually concerned
only with selected subsets of derivations; for example, "rightmost
derivations"”, in which the rightmost grameme in the string is always
selected for expansion (g.v.); or "leftmost derivations™, in which the
leftmost is always selected. "LR parsers" (gd.v.), for example, always

produce rightmost derivations, which accounts for the 'R' in the
acronym. '

derive. (1) In the morphological context, complex predicates are said to be
derived from their defining metaphors, which are always expressed in



GLOSSARY

the primitive predicates of the language. E.g., mormao is derived from
morto madzo via its constituent affixes (combining forms, or
allomerphs) mor and mao, which are in turn derived from those
primitives. Thus mor is derived from mor (to) and mao from ma(dz)o.

(2) In the grammatical context, some computer scientists use the word
'derive' to describe each step in a grammatical "derivation"; see
above. Thus, 'A derives B' is used to describe the replacement of some
grameme (or "nonterminal™) A by one of its allograms (or "right sides")
B during the course of a derivation. We prefer the less puzzling usage
'A expands as B' or 'A is expanded to B' to denote individual steps in
a derivation, or in the generation of an utterance, because it
contrasts happily with 'B reduces to A' or 'B is reduced to A', which
is the standard description of the same step taken in reverse during a
parse (g.v.); see 'reduce'.

disambiguate. If a grammar is ambiguous, it is possible that it can be

disambiguated--that is to say, made unambiguous in its effects--by
supplying its parser (g.v.) with precedence rules, q.v. Yacc was
especially designed for the disambiguation of ambiguous grammars
through precedence rules; for such grammars are in some practical ways
superior to grammars of the same languages which are unambiguocus
without such rules. The current grammar of Loglan has been
disambiguated in this way; see 'ambiguous'.

discursive. A word used in an utterance to call attention to relationships

ek.

expand.

between that utterance and previous utterances in a discourse, e.g.,
'on the other hand' and 'in particular' in English. Loglan discur-
sives, like attitudinals (g.v.), are members of the UI-Lexeme.

An English word, coined by John Parks-Clifford, denoting the Loglan V-
form connectives a/efo/u (excluding i) and all their compounds, e.g.,
anoi. As a verb, 'to ek' means to form a connection by using an ek.

In these notes, 'expand' means to replace a grameme (g.v.) by one of
its allegrams (qg.v.) while generating an utterance. Expansion thus
contrasts with "reduction" (g.v.), which is the reverse step made in
parsing an utterance. Thus, during parsing, allograms are "reduced to"
their gramemes; during generation, gramemes are "expanded as (or into)"
some selected one of their allograms if they have several. But see
'derive', sense (2), for a synonymous usage in computer science.

expression. In these notes the phrase 'expression of (some grameme)' always

FIFO.

refers to the (sub)string of words in an utterance that "corresponds
to" (i.e., was generated by or parsed as) that grameme in the course of
its generation or parsing. Thus, the phrase La Djan in La Djan, mrenu
is an expression of argument; but it is also an expression of arg, of
arg2, and of argl. Djan, on the other hand, is an expression of the
name-grameme only; for name is the only grameme to which Djan ever
corresponds during the course of the parse. La expresses no grameme.
It is simply an allolex of the LE-Lexeme called for by the LE name
allogram of argl. These examples will be found on pp.ll1-12 of the
Grammar.

An acronym for 'first in, first out'; contrasts with 'LIFO', g.v.

free mod, freemod. Abbreviations of 'free modifier', gq.v.



GLOSSARY

free modifier. Any of the set of lexemes UI1/1.01/KIE/DJAN, but DJAN only when

front.

not preceded by LE (which now includes la), together with any strings
of lexemes which they may have "gobbled" (q.v.) during preparsing.
These lexemes (together with their gobbled companions) are permissible
modifiers of any word in an utterance--including one of themselves--and
in that sense are "free to go anywhere". Free modifiers are in turn
caused by the Preparser to be gobbled by the immediately preceding
lexeme if there is one, and so are never seen by the Parser unless they
are initial. 1In that case the first of any initial string of free mods

is taken as a headmod. So the free mods are also the allograms of
headmod, q.v.

Used as a verb, 'to front' something means to move it to the front of
an utterance. 'Fronted' thus applies to expressions so moved.

The GA-Lexeme. When shown in the AP of a Corpus specimen, an "implicit
punctuator", q.v.

generator. (1) In these notes, usually short for 'speech generator'. TIn the

gobble.

grammar.

broad sense, such a generator is any device--a computer or a human
brain--capable of "acquiring™ (learning or being programmed with) a
grammar of a certain language, together with such other rules and
peripheral devices as enable that device to use that grammar (i) to
generate a string of lexemes, (ii) to select an appropriate allolex for
each lexeme, and (iii) to transform those allolexes (words) into a
stream of speech-sounds or printed letters which form an utterance of
that language. Corresponds to ‘parser', sense (1), but works in the
opposite direction. (2) In the narrow sense, that part of such a
device that performs step (i), zbove. (3) In computer science,
‘generator' usually means an "automatic parser denerator", given an
appropriate grammar as input. Yace (g.v.) is such a parser generator.

When a lexeme is made to carry a record of certain immediately
subsequent lexemes, or, in the case of strong quotation, of a string of
foreign words which can neither be lexed (g.v.) nor parsed, and the
subsequent lexemes and/or foreign strings are then removed from the
utterance to be parsed, the first lexeme is said to have "gobbled" the
eliminated material. Gobbling is an action caused by the Preparser
(q.v.) in preparing an utterance for the Parser, g.v. The gobbled
material may be viewed as the "grammatical noise™ (g.v.) in the
original utterance. The gobbled words and strings are restored by the

Parser to the Actual Parse (q.v.) after parsing and before it is handed
to the Postparser, g.v.

(1) In the broad sense, the word 'grammar' is often used to denote
the entire system of rules, including preparsing and postparsing rules,
by which utterances are either generated or parsed by the devices which
"acquire"” these rules. This is the sense of the word, for example, in
the phrase 'the current machine grammar of Loglan'. (2) In the narrow
sense, a grammar is a set of rules, expressed entirely in terms of
gramemes, lexemes and the rewriting sign (see 'grammar rule' below),
from which parsers and/or generators can be constructed which are
purportedly capable of parsing and/or generating all of the utterances
of some language. The Trial.l9 Grammar is an early approximation of
such a grammar. But the language which the grammar in this narrow
sense generates and parses is "machine Loglan", q.v. This is quite a
different language from "human Loglan", q.v. So it is only the grammar



grammar

GLOSSARY

in the wide sense--the system of rules composed of Preparser, Parser,
and Postparser=-that accepts human utterances as input and delivers
"humanized parses" as output.

rule. A grammar rule of a context-free (g.v.) phrase-structure (g.v.)
grammar, such as Loglan's is, is composed of exactly one element in the
left-half, which is always a grameme (g.v.)--or a "nonterminal symbol”
as it is called in computer science--followed by the "rewriting sign",
which is usually a right-pointing arrow, followed by a right-half
composed of one or more elements, which may be gramemes and/or lexemes
("terminal symbols") in any order, which together constitute an
allogram (g.v.) of the grameme in the left-half. Rules defining the
allograms of the same grameme are generally grouped together, and in
that case their common left-half is not repeated but remains implicit.

grammatical structure. In these notes, synonymous with 'parse', q.v.

grammaticality. Formally considered, grammaticality is a property of certain

grameme.

strings but not others made from the words of a language, given some
grammar of that language. If a given string parses on that grammar, it
is grammatical; if it does not parse, it is not grammatical. It need
not, of course, parse "correctly"; see 'parse'. On the other hand,
when empirically considered, grammaticality is evidently a property of
an utterance for a given listener (or reader). If he can "understand"
the utterance in the limited sense of being able to parse it with
whatever grammar he has in his head, he will say that it is
grammatical. Thus if the listener can arrive at any conclusion as to
how the utterance was "put together"™ by the speaker, then it is
grammatical...for him. Again, of course, his parse need not be the
correct one. He need not have guessed correctly how the speaker
actually put the utterance together. And in ambiguous languages--that
is to say, natural ones--he will often guess wrongly. (But even if he
discovers later that his guess was a wrong one, he is likely to insist
that his interpretation, too, was a "grammatical™ one.) Moreover, and
again like the machine parser, the human listener does not even need to
know the meanings of all the individual words he hears in an utterance
in order to parse it. It is only necessary that he be able to lex
(g.v.) them, again perhaps incorrectly. Thus, 'The groos are fleaner
than the glitches' is parsible--and hence grammatical--to our English
ears because we can confidently assign 'groo', 'flean' and 'glitch' to
English lexemes on the basis of their positions in this sentence.
Thus, grammaticality is a weak criterion, easily satisfied between
listener and utterance. Yet it is probably because it is only this
weak property of allograms that must be conserved in evolution, namely
that the new allograms used by innovative speakers yield equally
parsible utterances for their listeners when interchanged with old
allograms, that the grammars of all human languages have evolved so
luxuriantly. See 'allogram' and 'grameme' for related notions.

A grameme is the common left~half of all the rules in a grammar which
have that left-half. The right-halves of the rules which thug "define"
a grameme are its allograms (g.v.), and the exhaustive set of allograms
for any grameme exhibits all the ways in which that grameme may be
expressed (q.v.) in utterances. Thus in the current grammar of Loglan,
the grameme named argl may be expressed as a variable, a name, a
description, a guotation, or as a LEPO-clause (event-description); see
P.11 of the Grammar. What this means is that in any utterance in which



GLOSSARY

argl is expressed in some way--—say, by a name--that expression may be
replaced by an expression of any other of argl's allograms--say, by a
variable--without changing the grammaticality of that utterance. That
is, if grammatical, it will remain grammatical; if ungrammatical, it _—
will remain ungrammatical. Thus a grameme may be seen as a set of
"grammaticality-conserving" alternatives (its allograms), just as a
lexeme (g.v.) is a set of "structure-" or "parse-conserving"
alternatives (its allolexes), a morpheme as a set of "meaning-
conserving" alternatives (its allomorphs), and a phoneme as a set of
"signal-conserving" alternatives (its allophones). The names of
gramemes are completely arbitrary. Apparently they exist for the
convenience of grammarians only. For while gramemes must have
neurological counterparts in human brains--else we could not parse
Sentences--they do not, apparently, appear in human consciousness.
(What we are here calling "gramemes" are what computer scientists
concerned with the design of programming languages call "nonterminal
grammar symbols", or simply "nonterminals"®.)

group. (1) As a noun, a group is a non~initial substring of some predicate
string (qg.v.) which is marked in one of three ways. It is either
hyphenated with ci (see 'group~hyphen') or its left boundary is marked
with ge, g.v. If a ge-marked group is non-final in a predicate string,
its right boundary must also be marked with the group-ender que, Q.v.
(2) As a verb, 'to group' means to form a group within a predicate
string. Groups function grammatically as single predicate words.

group-ender. The little word gue, one of the optional punctuators (g.v.) of
Loglan; see ‘group' for the uses of gue.

group-hyphen. The little word ci; see 'group'. Hyphenated groups of length
three or greater are right-associative, d.v. Unmarked predicate
strings, which are of course the commoner forms, are left-associative.

group-starter. The little word ge; see 'group'.

GU, GOE. The GU and GUE Lexemes. When either of these lexeme names appears in
the AP of a Corpus specimen, it is a sign of an "implicit punctuator",
q.V.

HAP. An acronym for ‘Humanized Actual Parse', q.v.

HB-tags. The series of arguments ordinals pua/pue/pui/puo/puu which permit one
or more arguments of a predicate to be spoken out of normal word-order.
The acronym 'HB' is from 'Hixson-Bonewits', a nom de plume of the
loglanist who first suggested such ordinals.

head-kekked. A predicate string (qg.v.) whose first, or head, predicate words
are kekked; see 'kek' and 'kekable'.

head-predas. An abbreviation for 'predicate words at the head of a predicate
string’; see 'head-kekked'.

headmod. The name of a grameme in the current grammar whose allolexes are the
free modifiers UI, LOI, REK and DJAN; see 'free modifiers'. A headmod

is thus a free modifier, or a string of free modifiers, at the head of
an utterance.



GLOSSARY

high noise alternative. Whereever the grameme gap occurs in the grammer,
either of its allograms GO or PAUSE may be used. It is thought that
the spoken comma gu will be the alternative that speakers will use in
noisy conditions, or with interlocutors (like machines) who are not
good at guessing what they mean. This provision of high vs. low noise
alternatives for a punictuation grameme reflects what is expected to be
the dual use of Loglan in both human-to-human and human-to~machine
communication.

human Loglan. This phrase is used in two senses in these notes. (1) It
denotes the Loglan that loglanists actually write and speak, what might
better be called "current Loglan". But (2) 'human Loglan' is also used
to denote the slightly different language in which the specimens in the
Corpus are now written. It is this second sense of 'human Loglan'
which compares most meaningfully with 'machine Loglan', g.v. For it is
this new version of human Loglan, the one which has emerged from our
interactions with MacGram, which is of course the version of the human
language which is now understood by MacGram.

Humanized Actual Parse. The parse produced by the Postparser (qg.v.) in the
present machine grammar of Loglan. Often abbreviated as 'HAP', the
Humanized Actual Parse is given on the 4th line of Corpus entries. It
represents a "humanization" of the Actual Parse produced by the Parser
for that specimen. The Postparser performs its humanization by
removing any machine lexemes (q.v.) or lexemic pauses (q.v.) which the
Preparser may have inserted for the Parser's benefit, by removing any
implicit punctuators (q.v.) the Parser may have encountered while
parsing the specimen, and by recompounding any CPDs that may have been
decompounded (q.v.) by the Preparser. It also removes the surplus
parentheses it will always create by these removals and recompoundings.

humanoid. A vague but nevertheless probably deeply meaningful criterion which
we attempted to satisfy in the writing of the Target Parses, q.v. As
the word suggests, we wanted to construct the parses toward which we
meant to steer MacGram in "human-form" ways, that is, in ways that
would suggest "clamping routes" for the understanding of the utterances
in question that would be immediately meaningful to human heads...on
the assumption that there are some basic parsing principles that are
"hard-wired"” in all human heads. Whether we succeeded in making
MacGram's own parses sufficiently humanoid in this or any other sense—-—
for these were the targets that were ultimately hit when MacGram
successfully parsed the entire Corpus; see 'Yacc'--is still an open
question. If there is a set of "expression-substitution" experiences
which will cause human listeners to parse Loglan utterances in these
ways, we have succeeded; if not, we have not.

HumGram. An affectionate contraction of "human grammar®, the still-unknown
actual grammar of "human Loglan" (g.v. sense (2)), an image of which
was conjured up in the minds of the MacGram workers during the writing
and revision of the Target Parses, q.v. Thus, the MacGram workers not
only developed an increasingly firm notion of what the (new) human
language should be like, as the project approached conclusion, but also
some very strong intuitive notions (no doubt derived from their own
parsing and/or generating behavior as loglanists) as to how the
specimens submitted to MacGram "should parse". It was this entirely
hypothetical grammar which was responsible for the increasingly
"humanoid parses", the HAPs, which we managed finally to evoke from



10

GLOSSARY

MacGram; and which was, for a time, known to us as HumGram. But to the
extent we were successful, HumGram is now functionally equivalent to
MacGram. So a separate name for it is no longer quite so useful.

identity interrogative. The little word hu, a replaceable interrogative; see

'interrogative' below.

inflector. Any member of the PA, NU;, NO or PO lexemes which occurs immediately

Initial

before a predicate word or expression is in "inflecting position", and
hence an inflector.

Grameme. Every grammar has exactly one grameme (g.v.) with which it
starts every generation and ends every (successful) parse; that is its
"Initial Grameme®”. 1In the current grammar of Loglan, the Initial
Grameme is utterance. To the Generator (g.v.), the appearance of
utterance under its scanner must in Some sense represent the urge to
speak: 'I have something to say.' To the Parser, the appearance of
the same grameme under its scanner must in some similar sense mean 'I
have understood.'

implicit punctuator. Any of the lexeme labels GA, GU or GUE which the Parser

puts into the Actual Parse (g.v.) at the points where it has found an
"error". This error is always occasioned (given a grammatical
utterance) by its having found one of the optional punctuator gramemes
ga/qu/gue in the string to be parsed but no lexeme of the required
type~--a real GA, GO or GUE--to match up with it. 1In these cases it is
forced to accept the "error grameme” err as the active allogram of the
punctuator grameme in question. The Parser tells us that it has
encountered such a pseudo-error by inserting the label of the lexeme
that wasn't there into the parse. This is, of course, completely
arbitrary: we might have had it insert asterisks at these points. But
the occurrence of these capitalized punctuator words in the Actual
Parses allows us to study how the machine grammar is working at these
often crucial points in the utterance where punctuation might have been
used but wasn't. All such implicit punctuators are, of course, removed
from the Humanized Actual Parses by the Postparser, q.v.

interrogative. Any of the interrogative particles of Loglan. There are now

three types of these: (i) the identity interrogative ie, (ii) the
truth interrogative ei, and (iii) the replaceable interrogatives ha/-
he/ho/hu. BRa is used like an ek, i.e., an a-type connective, and so
requests its own replacement with an ek as an answer; he is used like a
predicate word, and so requests replacement with a PREDA or some other
predicate expression; ho is used like a number word, and so requests a
NI or some more complex mathematical expression as an answer; and hu is
used like an argqument, and so requests an argument as an answer. Fi
behaves grammatically like any other attitudinal and so is a member of
the UI- Lexeme. Ha, he and ho are undistinguished members of the A,
PREDA and NI-Lexemes, respectively. Hu is not a member of the DA-
Lexeme only because it is used by the Preparser to identify nahu =
'when'-type compounds; but grammatically, the simple word hu behaves
Just like DA. So only ie has its own special grammar and for that
reason, its own lexeme.

inverter. The little word go, sometimes called "the inversion operator™. go

occurs optionally inside predicate strings (g.v.) and informs the
listener that the part of the string that precedes it is normally (that



GLOSSARY

is, when Spoken without go) spoken last, and vice versa; in other
words, that the predicate string has been inverted at this point.

kek. An English word, coined by John Parks-Clifford, denoting the Loglan
kv-form connectives ka/ke/ko/ku and all their compounds, e.g., kanoi.
As a verb, 'to kek' means to form a connection by using a kek as a
prefix and one of the allolexes of KI (ki or kinoi) as an infix between
the connected forms.

kekable. The name of a grameme (g.v.) in the current giammar. A kekable is a
predicate string (qg.v.) whose first elements may be, but need not be, a
kekked pair (g.v.) of predicate words. Such strings are used only as
the operands of descriptions. The kekable grameme thus contrasts with
the predstring (g.v.) grameme which may not have kekked head-predicates
and whose expressions function as predicate expressions, q.v.

L-conn. An abbreviation of 'logical connective'; contrasts with 'C-conn',
'causal connective'.

left-associative. A string of three or more elements is left-associative if
their parse groups leftmost pairs of them first. Thus, given full
parenthesization of a parse, as in the Corpus, the left-parentheses
will cluster at the left edge of a left-associated string: e.g., (((A
B) C) D), just as right-parentheses will cluster on the right in right-
associated strings: (A (B (C D))). Left (Right)-associated strings of
similar elements in a parse--names or predicates, for example--are
almost always generated by left(right)-recursive rules, q.v.

left-mark. Any mark, like a leading kek (g.v.), that marks the left-boundary
of some expression of a grameme in an utterance.

left-recursive. A grammar rule is recursive if the grameme appearing as its
left-half occurs also in its right-half. That is to say, the grameme
recurs in its own allogram, g.v. A recursive rule is left-recursive if
the recurring grameme is the left-most element in its allogram, or if
the only elements standing to its left in the allogram are marker
lexemes (like KA) or machine lexemes, q.v. If a rule is left-recurs-
ive, the concatenated strings of elements which will be generated by
repeated applications of the rule are also left-associative (q.v.), or
"}eft-grouping”. There is some reason to believe that most, and
possibly all, optional continuations in human languages are left-
associative. On this hypothesis nearly all recursive rules in Loglan
grammar have been made left-recursive. Not surprisingly, there are
some computational advantages in left-recursion as well. :

lex. (1) As a noun, a synonym of 'word', g.v. (2) As a verb, 'to lex' means
to assign all the words in an utterance (including compounds) to their
lexemes. Lexing is a function performed by the Preparser, q.v. It
presupposes the existence of a Resolver (q.v.) which establishes the
word-boundaries in an utterance before presenting it to the Preparser.

lexeme. A set of grammatically equivalent words in a language. The test of
grammatical equivalence is whether one word may replace another, in all
of its occurrences, without changing the "grammatical structure", or
parse (q.v.), of any of the utterances in which it may occur. Thus, on
the grammatical level the concept of lexeme is parallel to that of
phoneme on the phonological level (phonemes are sets of phonologically

11



GLOSSARY

equivalent sounds) and to that of morpheme on the morphological level
(morphemes are sets of semantically equivalent phoneme-sequences:

words or word-parts). The notion that the lexicon of a language may be
divided into lexemes is intimated by the "parts of speech" conventions
of traditional grammar. But a speech part, say the English Verb,
actually consists of numerous similarly behaving lexemes ("types of
verbs") which must be kept distinct from one another in any formal
account of English. It is a remarkable fact about Loglan not only that
its lexemes are very few (around 60) but also that the bulk of its
vocabulary, namely all its Predicates, or all its noun-, adjective- and
verb-like words, are genuinely members of just one lexeme: the PREDA~
Lexeme. What we are here calling "lexemes" are called "terminal
grammar symbols”, or simply "terminals", by computer scientists.

lexemic. Any feature of an utterance which is necessary for determining the
identity of its lexemes; contrasts with 'morphemic', q.v.

lexemic pause. A pause which functions like a word in the parse, and which
therefore is a lexeme; contrasts with 'morphemic pause’, q.v.

LIFO. An acronym for 'Last In, First out', the "stacking" principle.

link. Either of the two little words je or jue employed in the construction
of linked arguments, q.v.

linked argqument. Arguments linked to a single, preceding predicate word by the
linking operators je or jue are called linked arguments. At one time,
the privilege of having linked arguments was confined to final
predicate words in strings used in descriptions. This restriction has
now been lifted. One consequence is that non-final predicate words in
any predicate string may now be given linked arguments. So now the
"internal specification" of predicate strings (e.g., as in 'faster-
than-light ship') may be accomplished with the same grammar rules that
attach arguments to descriptions.

LIP. An acronym derived from 'Loglan Interactive Parser'. LIP is a piece of
software which embodies the present state of MacGram (g.v.) and which
allows the user to examine the parses and parse-trees of freely
contrived Loglan utterances, provided they are grammatical on the
present grammar, and so to examine the interactions of the grammar
rules with the Preparser and Postparser algorithms.

little word. 1In Loglan, any word which is neither a Predicate nor a name is
called a "little word" regardless of its length. Simple little words
are of the forms V/VV/CV/CVV, and so are genuinely little. But
compound little words, also known as compound words or simply
compounds (g.v.), are composed of strings of simple little words, and
the strings may be of any length. E.g., a number word is composed of
CVv-form syllables and as many of these may be concatenated in a single
word as the speaker can deliver in one breath. Much the same thing is
true of tense operators: witness noipacenoinacenoifa, which is a bit
difficult to deliver pauselessly on the first try. Thus the only
practical limit on the length of Loglan compounds is the morphological
requirement--necessary for the unique resolution of words by the
Resolver (g.v.)--that no word may contain a pause.

long scope. Certain predicate operators, like all members of the PA-Lexeme,



GLOSSARY 13

have long scope when used as inflectors (g.v.), in that their sense
applies to the entire subsequent predicate expression, including any
arguments. Other predicate operators, like no and the members of the
PO-Lexeme, are close-binding (g.v.) as inflectors, and so have short
scope unless they are followed by a long-scope operator. In that case
they, too, acquire the long scope of the long-scope operator.

lockahead. The action of an LR parser (g.v.) when it "looks at" (determines
the identity of) the next one or several of the lexemes still to be
parsed. Thus, at any instant in the course of a parse, except at the
very beginning, the parser will have shifted some leftmost portion of
the utterance it is parsing onto a "stack", a region that corresponds
in the parsing model to human temporary memory. It is from the
elements closest to the "top"™ of this memory stack that the parser
finds the allograms which it replaces with their gramemes, thus
"reducing” (qg.v.) them, and, usually, the number of elements in the
stack, or the load on its temporary memory, as well. Which allogram
the parser selects for replacement, or whether it decides not to reduce
at all but to shift another lexeme onto the stack, is partly determined
by what it finds by its lookahead; that is, by the information given by
its scanner about what is coming up. The number of lexemes an LR
parser can "look ahead” at in this way is a measure of its lookahead
capacity, or what amounts to the size of its "scanning window". At
present the size of the scanning windows in efficient LR parsers is
severely limited. 1In the parsers built by Yacc it is limited to one;
see 'LRl, LR2, etc.'

LR parser. An LR parser is one which scans the input string from Left to
right and produces a "Rightmost derivation (g.v.) in reverse™. This
definition--which apparently produced the acronym 'LR' now so firmly
installed in computeér science--is a bit paradoxical. For to perform a
"rightmost derivation in reverse" is actually to perform a series of
reductions (g.v.) in which the leftmost allogram capable of reduction
is chosen at each step. Reduction is one of the two essential actions
of an LR parser, the other being "shifting". The parser shifts a
lexeme into its temporary memory when it moves its scanning window one
place further to the right along the input string. Reductions then
take place on the material stored in memory. The action sequences of
an LR parser are sketched in more detail under 'lookahead' above. The
most efficient current parsers which can be automatically generated by
parser generators like Yacc (g.v.) are apparently of the LR type; and
this is in fact the kind of parser Yacc generates when given a suitable
grammar. Accordingly, the current Loglan Parser is an LR parser.

LR1, LR2, etc. The number sometimes attached to the acronym 'LR' indicates the
number of lexemes which the scanner of the parser in question can
accommodate as it moves along the input string. It is therefore a
measure of the size of the parser's “"scanning window"; see 'lookahead'.
The parsers generated by Yacc, and hence the current Loglan Parser, are
all LR1. If there were an LR2 parser for Loglan, the number of machine
lexemes (g.v.) which now distinguish the human from the machine form of
the language (see 'machine Loglan') could immediately be reduced from 9
to 3, and probably 2 of the remaining 3 (M1l and M12; see p.4 of the
Grammar) could also be eliminated. But M7 would remain so long as this
curiously esoteric feature of the language--provision for predicate
variables in prenex (g.v.) quantifiers--were retained. Still, the
small size of the "scanning windows" of contemporary computer—denerated



14

GLOSSARY

parsers is, in a sense, both an artificial and probably a temporary
constraint on the design of "speakable languages", g.v. For the human
"scanning window" may well be an order of magnitude larger than the
best we can model on computers now.

LYCES. An acronym for 'the Loglan Yaccing & Corpus-Eating System'. This is
the computer-assisted system of grammar-writing designed and built by
MacGram workers for the development of an appropriately "humanoig"
(g.v.) machine-grammar of Loglan. LYCES works by measuring the
successive "parsing tracks" made by a sequence of trial grammars
through a large corpus of specimens of "human Loglan", g.v. The
measurements supplied by LYCES are detailed enough so that the user may
be certain that each trial grammar kept for further development has
shed at least some of the vices but kept all of the virtues of the
preceding one. The current grammar of Loglan is the nineteenth "vacced
grammar" (see 'yacc') produced in this way at our San Diego Research
Center...about seven grammars beyond the one that first parsed the
whole corpus correctly. The corpus in question is, of course, the
Corpus presented in this Notebook.

ILW. An abbreviation of 'little word', q.v.

M-insertion. An abbreviation of the phrase 'insertion of machine lexemes'
(3.v.), a function of the Preparser, gq.v.

M-lexeme. An abbreviation of 'machine lexeme', q.v.

MacGram. An affectionate abbreviation for 'the machine grammar of Loglan',
i.e., the one built with LYCES, g.v. Contrasts with 'HumGram', g.v.

machine lexeme. An artificial lexeme which is created by the Preparser and
inserted in the specimen at those points where an LRl parser (q.v.)
would not be able to continue the parse because of the limitation of
its lookahead, q.v. In a sense what the Preparser does is report back
to the Parser what sorts of lexemes are coming up. The Preparser knows
what is coming up because, in this approximation of a human parsing
model, it is able to scout ahead of the Parser and send back
information in the form of machine lexemes, stationing them as it were
in the specimen at the points where the information they provide will
be most useful to the Parser when it reaches them. (Currently, there
are nine machine lexemes, each one appropriate to a particular type of
sequel.) So by the time the Parser does encounter a machine lexeme, at
least that local region of the utterance will have been transformed
into something that can be parsed LR1. These artificial lexemes are
called "machine lexemes" because their insertion in-a specimen of
"human Loglan" (q.v.) helps to convert the specimen into an utterance
of "machine Loglan" (q.v.); and every utterance of machine Loglan can
be parsed LR1. The machine lexemes are removed by the Postparser after
_the LRl Parser's work is done.

machine Loglan: The language in which the Preparsed Strings (gq.v.) are
written. Machine Loglan differs from human Loglan in four ways: (i)
Machine lexemes have been inserted in order to make the utterance
parsible LR1l; see 'machine lexemes'. (ii) Certain types of compound
little words have been decompounded, g.v. (iii) The "grammatical
noise" created by various kinds of free modifiers (g.v.) in the human
language has been removed. Finally (iv), lexemic pauses (g.v.) have



GLOSSARY

been identified and inserted in the specimen as if they were words. So
in some ways human Loglan (g.v.) has been stripped down to make a
language which the machine can read. Yet in other ways the machine
forms have been elaborated with strange, redundant signals which the
human mind evidently finds unnecessary. Machine Loglan is thus much
more like a programming language than human Loglan is. Yet the two
versions of Loglan are algorithmically equivalent. Any grammatical
utterance in one of them can be reliably translated into a unique
utterance in the other. 1In fact, it is just such acts of swift
translation which the Preparser and Postparser now regularly perform in
the service of MacGram.

McG. An acronym for 'MacGram', which is in turn an abbreviation of 'machine
grammar'; in particular, the machine grammar of Loglan; see 'MacGram'.

metaphorizer. The lexeme JA. It is the semantic function of ja and kin to
mark the immediately preceding word or phrase as a metaphor. But JA is
grammatically non-significant. So it is part of the "grammatical
noise" (q.v.) gobbled by the Preparser, q.v.

monolexic. Said of lexemes which have exactly one allolex, g.v. Most
monolexic lexemes are punctuation words. The negative NO and one or
two other non-punctuation lexemes are also monolexic.

morpheme. A morphological concept parallel to 'phoneme' at the phonological
level, to 'lexeme' at the lexical level, and to 'grameme' at the
grammatical level. A morpheme is a set of contextually distributed
forms (words or word-parts) all of which have the same verbal meaning
or perform the same syntactic function. Thus 'a' and 'an' are
semantically equivalent contextual variants of the indefinite article
in English; and so, allomorphs of the same morpheme. Most Loglan non-
predicate words are monomorphic, that is, have only one form. Nearly
all Loglan complex predicates and a large majority of its primitives
are polymorphic. That is to say, the primitives have combining forms,
some long, some short; and so the complexes (g.v.) derived from such
primitives also have variant forms, ranging from short to long, the
choice of which may be suited to the context.

morphemic pause. Morphemic pauses are pauses required by the Resolver (g.v.)
for the identification of word-boundaries, principally the right-
boundaries of names. Unlike lexemic pauses (g.v.) they do not appear
in the Preparsed String, g.v. Once the word-boundaries they have
helped to establish are known, their work is over. So all signs of
them can be dropped from the Preparsed String.

nonterminal. An abbreviation of 'nonterminal grammar symbol' and therefore a
synonym of 'grameme', g.v.

optional punctuators. The three optional punctuators of Loglan are ga/gu/gue,
the same words whose lexemic representations GA/GU/GUR appear as
"implicit punctuators" (g.v.) in the Actual Parses, g.v. Each
punctuator has a restricted set of occasions on which it may or may not
be used. But its use or non-use on those occasions will always make a
difference in the parse, g.v. So the optiocnal punctuators of Loglan
are not often optional in the sense that their presence or absence
makes no real difference in the claim of the sentence, like some usages
of the English comma. Instead, the punctuators of Loglan nearly always

15



GLOSSARY

make a substantial difference. Thus their implicit appearances in the
Actual Parses of the Corpus mark the "empty slots" in which they might
have been used, and so made a difference had they been used.

parse. (l) As a verb, 'to parse' an utterance is to decide how all its lexemes
(q.v.) are to be "clamped together" and in what order. Such a decision
may not be correct even if successful, that is, even if it leads to a
parse of the whole utterance. The parsing decision is correct if and
only if the "parse-tree" (qg.v.) describing that decision is formally
identical to the parse-tree by which the utterance was generated.
Given a disambiguated (q.v.) context-free grammar, such as Loglan now
has, and given human speakers and listeners capable of acquiring that
grammar, that decision will always be the correct cne. (2) As a noun,
the word 'parse' in these notes refers to any representation--like a
parse-tree or a full parenthesization of the utterance--of the way the
lexemes of the utterance were "clamped together" during the parsing
operation. Thus in the notes to the Corpus, the word 'parse' always
refers either to the Actual Parse (AP), to the Humanized Actual Parse
(HAP) , or to the Target Parse (TP), all of which are fully parenthe-
sized representations of some form of the utterance. See these entries
for more details. Note that this definition does not require that the
grameme labels at the nodes of the parse-tree be either known or
knowable. They can be entirely missing from the representation of the
parse, as indeed they are missing from the parses shown in the Corpus.

parse-tree. A parse-tree, such as that produced by LIP (g.v.), is a branching
graph showing how the pieces of the utterance--the "leaves" of the
parse-tree, or the lexemic representations of its words-~-were put
together by the parser (q.v.) in such a way that they all lead
"downward" to, or can be seen as "growing out of", a single grameme at
the "root" of the parse-tree. This root grameme is always the Initial
Grameme of the grammar in question. In our case the root of all parse-
trees is the grameme utterance. Moving upward from root to leaves, one
generates the utterance; moving downward from leaves to root, one
parses it. If the graph describing the way an utterance was generated
is the same graph as the one describing its parsing, then the parse is
a correct one. If both the parser and the generator {(q.v.) are using
the same disambiguated grammar (g.v.) to construct these graphs, there

will be only one possible parse of any grammatical utterance. So the
two graphs will always be identical.

Parser/parser. (1) In the broad sense, a parser is any device--a computer or a
human brain--capable of "acquiring" (learning or being programmed with)
a grammar of a certain language, together with such other rules as
enable the device to read or listen to utterances of that language, and
to report its "understandings" of those utterances in some way. LIP
(g.v.) is such a device. The word 'Parser' in the phrase 'Loglan
Interactive Parser' suggests that LIP is a parser in this broad sense.
(2) In the narrow sense (in these notes, sometimes capitalized), the
Parser is that portion of any such device that receives strings of
lexemes as input from other portions of it and delivers parse-~trees
(g.v.) as output to still other portions of it. The Parser that is now
part of LIP was generated by Yacc (q.v.) from the Trial.l9 Grammar.

But LIP also contains both a Preparser and a Postparser, g.v., whose
business it is to prepare the string of lexemes for the Parser and to
"clean up" the parse-trees it produces to make them more intelligible.



GLOSSARY

phrase-structure grammar. A grammar that consists entirely of "rewriting

pointer.

rules”, of the sort described under the entry for 'grammar rules'
(gd.v.), but not restricted to rules with single gramemes in their left-
halves. Thus, phrase-structure grammars may be either "context-
sensitive" or "context-free", g.v.

The lexeme LAE has two allolexes, lae and sae, each of which forms a
"pointer" designation: a description which "points to", and so
indirectly designates, something other than the thing described. Lae
takes designations of signs as operands and refers, thus indirectly, to
the thing or things designated by those signs. Sae is the inverse of
lae and so takes designations of anything as operands and refers, thus
indirectly, to the sign or signs of those designated things.

Postparser. That part of LIP (g.v.) that receives parse-trees (q.v.) from the

PP.

PPS.

Parser (q.v.), removes the machine lexemes (g.v.) from them--as well as
all signs of their having been there--reassembles certain compounds
that have been broken up by the Preparser (g.v.), removes all the
implicit punctuators (q.v.) found by the Parser, restores the free
modifiers (g.v.) to their places, and generally "humanizes" the parse.
What the Postparser produces is therefore the Humanized Actual Parse,
or HAP, which it creates by modifying the Actual Parse, or AP, that was
handed it by the Parser.

An acronym for 'Preparser', q.v.

An acronym for 'Preparsed String', q.v.

precedence rules. Two kinds of conflicts may occur to an LR parser, q.v. One

is whether to shift or reduce (see 'lookahead') when reducing is
possible. The other is whether to reduce to one grameme or to another,
when allograms of both gramemes have become available for reduction.
Precedence rules are capable of settlihg both kinds of conflict. Yacc
(gq.v.) has a facility for assigning precedence values to any grammar
rule and to any lexeme. So to dissolve a shift/reduce conflict in
favor of the shift, for example, it is only necessary to assign a high
precedence to the lexeme that is to be shifted and a lower precedence
to the rule involved in the competing reduction. Reduce/reduce
conflicts are dissolved by giving differing precedence values to the
competing rules. All 7 conflicts in the Trial.l9 grammar are
shift/reduce conflicts. And so all are easily dissolved by Yacc's
(q.v.) default procedure, which gives automatic precedence to the
lexeme to be shifted. See 'lookahead' for an account of the actions of
an LR parser.

pred-sign. Any of the set of lexemes which signal an upcoming predicate or

predicate expression to the Preparser. The Preparser uses such lists
of lexemic signs both to insert machine-lexemes (g.v.), to identify
lexemic pauses (q.v.), and to find the right-boundaries of such
"gobbled" strings as vocatively-used descriptions ("Carter-vocs",
q9.v.); see the Preparser Program for all such lists of preparsing

.signals.

pred-string. An abbreviation of 'predicate string', q.v. This descriptive

phrase contrasts with 'predstring', which is the name of a grameme; see
'predstring' below.

17



18

GLOSSARY

pred-string hyphen. The little word ci. Ci is an infix (or "linking

operator") used only in predicate strings to perform grouping
operations, g.v. It is thus.similar to the English hyphen. Thus ci
provides an alternative pattern of usages to the parenthesis-like words
ge and gue for forming groups within predicate strings, q.v.

PREDA, preda, pred. 'PREDA' is the name of the PREDA-Lexeme; but all of these

predexp.

i.e. any predicate word.

The name of a grameme in the current grammar, namely one that
includes all "predicate expressions', q.v.

predicate. (1) In the lexical sense, a predicate word. Thus, any of the

numerous noun-, verb- or adjective-like words of Loglan; more
precisely, any member of its PREDA-Lexeme. (2) In the most usual
grammatical sense, any string of such words, including those used in
descriptions; see 'predicate string'. But there are many other
grammatical senses of the word 'predicate'. Thus, of the 62 dramemes
in the current grammar, fully 27 of them define 'predicate' in some
way! It is, therefore, very difficult to use the single word precisely
when talking about Loglan utterances. It is better to use such
expressions as ‘'predicate word', 'predicate string', 'predicate
expression' and others suggested in this Glossary.

predicate expression. The main predicate of a declarative sentence

("statement"), with all its sutori arguments, if any, or an imperative
sentence taken in its entirety. The phrase thus encompasses all uses
of predicate words and strings, Plus any argument sets (q.v.) that may
be attached to them, except predicate strings used in descriptions.

The grameme predexp covers the domain of predicate expressions in the

current grammar. kakable (q.v.) covers those strings used in
descriptions.

predicate string. A string of one or more predicate words, together with any

of their close-bound (g.v.) operators and any linked arguments (g.v.)
of the constituent predicate words. This descriptive concept is very
closely related to two gramemes in the current grammar. One of them is
pPredstring, which is composed of just such predicate strings but whose
initial predicate words may not be kekked (d.v.); these will end up as
predicate expressions, q.v. And the other is kekkable, whose initial
predicate words may be kekked; and these will end up as the operands of
descriptions.

predicator. The little word me. Me combines with the immediately following

argument to form a predicate; it is thus a predicate-maker, or
"predicator".

predstring. The name of a grameme (g.v.) in the current grammar. A predstring

prenex.

is a predicate string whose initial predicate words may not be kekked;
see 'predicate string'. Contrasts with kekable, q.v.

An abbreviation of 'prenex quantifier'. These are the fronted
sentential quantifiers favored by logicians which in English are
usually read 'For any x' (the universal quantifier) and 'There is an x
such that' (the existential quantifier). 1In Loglan these standard
prenex forms are very simple: raba for the universal and ba for the
existential. But the grammar of these forms is now fully generalized.



GLOSSARY

Any argument preceded by a quantifier may now be used as a prenex.

Preparsed String. The specimen after it has been prepared for the Parser by
the Preparser. Often abbreviated 'PPS', the Preparsed String is found
on the 2nd line of all Corpus entries and may be regarded as an
utterance in "machine Loglan", q.v.

Preparser. That part of LIP (g.v.) that receives the specimen and prepares it
for the Parser. See 'machine Loglan'. The Preparser Program listed in
this Notebook shows most of the things that the Preparser does in
preparing the Preparsed String for parsing. (Other preparsing actions
are scattered about in other programs of the LIP system that are too
long to list here.) Sometimes abbreviated ‘PP'.

recompounding. An action of the Postparser, which locates all the compound
little words that have been decompounded by the Preparser, and puts
them back together again to make "good, human Loglan" (gq.v.) for the
HAP (the Humanized Actual Parse).

recursive. See 'left-recursive'.

reduce. (1) The opposite of 'expand', g.v. To reduce an allogram (g.v.) is to
replace it with its grameme, g.v. Thus reducing is to parsing as
expanding (or "deriving", ¢.v.) is to genmerating; it is to move
downwards in the parse-tree (g.v.) toward the "root" rather than
upwards towards the "leaves". (Parse-trees, in this image, are
rightside-up, rather than upside-down as computer scientists apparently
prefer to grow them.) Reduction is also to move in the opposite
direction from that indicated by the conventionally rightward-pointing
arrow of the "rewriting sign" in a grammar rule. (2) In a derivative
sense, reduction is also usually, but not necessarily, to reduce the
load on the temporary memory, or stack, of the parsing device by
replacing a string of more numerous elements in it (the allogram) with
one (the grameme).

replacing interrogative. An interrogative like ha/he/ho/hu which the speaker
is asking to be replaced by some word or phrase of its grammatical
type; see 'interrogative'.

Resolver. A component of MacGram that hasn't been built yet, namely that part
of it that will eventually accept utterances presented to it as
uninterrupted strings of characters, with stress, diphthongal vowels,
and only obligatory pauses shown, and then resolve such imitations of
the speech-stream into words, including the recognition of compound
little words, g.v. The result of the Resolver's work will therefore be
written specimens of substantially the same form as those presently
listed in the Corpus, and so be ready for preparsing by the present
Preparser. The rewriting of the resolution algorithm which will
perform this work has been deferred until the new morphology of the
complex predicate is completed.

right-associative. See 'left-associative'.

right-mark. Any mark, like the comma gu, that marks the right-boundary of some
expression (g.v.) of a grameme in an utterance.

right-recursive. See 'left-recursive'.

19



20

GLOSSARY

right side. A phrase used by some computer scientists with a sense synonymous

rule.

with our word 'allogram’', g.v.

An abbreviation of 'grammar rule', q.v.

semantic. In these notes, the word 'semantic' denotes the contributions to

shek.

shift.

shifted

meaning made by any non-grammatical feature of an utterance. It is
thus roughly equivalent to 'non-structural'. For example, when we say
that the allolexes of a lexeme differ "semantically but not grammatic-
ally”, we mean that the differences in their meanings can only come
from our knowledge of the "semantics" of the language, not from
anything we may learn by parsing them in sentences. Similarly, when we
say that all the free modifiers (gq.v.), as well as words like the "de-
localizer" gi, "make semantic contributions only", we mean that they
may be removed from or added to any utterance and its structural
meaning will not change. (On this view, a question and the
corresponding statement in Loglan have essentially the same "structural
meaning”; as in this grammar they clearly do.) Thus, the pPresence of
such words makes a kind of "grammatical noise”. But it is semantically
very rich noise...strangely independent of when it happens to be
produced by the speaker in the course his utterance.

An English word, coined by John Parks-Clifford, denoting the Loglan cv-
form connectives ca/ce/co/cu and all their compounds, e.g., noca. As a
verb, 'to shek' means to form a connection by using a shek.

(1) An action of the parser (d.v.) when it moves its scanning-window
one more place to the right during its left-to-right scan of an input
string. (2) Having done so, the single lexeme that was previously
under the scanner--of an LR1 (3.v.) parser, that is: but just the
leftmost lexeme in case the scanning-window accommodates more than one-
-is also said to have been "shifted to the top of the stack"; that is,
it becomes the most recent entry in the temporary memory of the device.
See 'lookahead' and 'LR parser' for more details of the parser model.

arguments. Any rightmost portion of the complete set of sutori
arguments of a predicate expression may be spoken. (or written) first,
then marked with the shift-mark guu, and then followed by that
predicate expression with or without a first argument in normal
position, and then, optionally, by any leftmost portion of the sutori
set that has not already been spoken. Shifted arguments thus make it
possible to omit medial members of the argument set, gq.v.

short-scope. Close-bound Operators (qg.v.) are said to have short scope.

simple word. An abbreviation of 'simple little word'; see 'little word'.

speakable language. Used in a sense roughly equivalent to 'human language' to

include Loglan with the natural languages, but also to distinguish it
from the "formal languages"--the programming languages and the various
mathematical and logical notations--which are like human languages in
some important structural ways but are not speakable. Yet Loglan is
like these formal languages in having been designed; and now, like some
of them, in being machine-parsible. At present, Loglan is an odd and,
it may be, the only member of both sets.



GLOSSARY 21

strong quotation. Quotation with lie and a pair of arbitrarily chosen
identical terminators between which any string of representable speech
sounds, including foreign ones, may be quoted. Thus the strings quoted
with lie are not offered to the Parser for parsing, but are instead
gobbled (g.v.), along with the two terminators, into the lexeme LIE
before presentation to the Parser.

superset. 2Any set of which a second set is a proper subset is a "superset" of
the second set. That is to say, it has all its members and some
besides. Many features of the new "human Loglan" developed through
interaction with MacGram produce supersets of corresponding utterance
domains in old Loglan. For example, the sutori arguments of a
predicate expression may now be linked arguments of its final predicate
word. So La Djan, farfu je la Djek is now grammatical. This sentence
was not grammatical as recently as 1980.

sutori. A Loglan word, imported into English by loglanists, which means 'at
least second', and hence 'second or subsequent'. For example, one can
speak of the 2nd through the final arguments of a predicate as its
"sutori arguments", a usage that appears frequently in these notes.

Target Parse. The parse shown between #-signs on the 5th line of the Corpus
entries. These were our sometimes-altered target conceptions of what
constituted "humanoid parses" of the Corpus specimens. It was these
parses which we tried to make the HAPs approach during the final stages
of our work with MacGram; see LYCES. But often, of course, we would be
nudged by MacGram intc awareness that the HAP it was then producing for
a given specimen was actually a better parse of that specimen than the
one we had previously adopted as its TP. When this happened, our
conception of the HumGram (g.v.) changed; and we adopted these "Good
HAPs" as the Target Parses for the next pass through the Corpus.

tense operator. Any member of the PA-Lexeme when in inflecting position, q.v.

ternary. A structure with three elements; contrasts with 'binary'. For
example, any infix--e.g., CI or A--produces ternary structures.

terminal. An abbreviation of the phrase 'terminal grammar symbol' as used by
computer scientists, and therefore a synonym of our word 'lexeme', q.v.

TO. An acronym for 'Tense Operator', g.v.

TP. An acronym for 'Target Parse', q.v.

truth interrogative. The little word ei = 'Is it true that...?' Ei has the
grammar of any other attitudinal, and so is just another member of the

vast UI-Lexeme; see 'interrogative' and 'semantic' for more details.

Vv, V-. Abbreviations of 'vowel'; used either in morphological formulas, or as
a prefix, e.g., as in 'v-final'.

voc. An abbreviation of ‘'vocative', g.v.

vocative. Any feature of an utterance used to call the attention of a specific
hearer or hearers; also, as an address of an intended recipient.

word. From the standpoint of a grammar, a "word" is any allolex of any of its



22

GLOSSARY

lexemes; that is, it is any lex. But our grammar (in the narrow sense)
is a grammar of "machine Loglan" (g.v.), not of "human Loglan™. And
there are many compound words in human Loglan, e.g., the universal
quantifier raba, which are so unified in meaning, so like contrasting
simple words in function (e.g., raba alternates with ba, the existen-
tial quantifier, in quantifying sentences), that the grammatical
operation that originally formed them is in a sense lost to our minds.
8o for us to write such words as strings of separate words, as the
grammar now insists we do for it, would be to do vioclence to our human
sense of the language. But this raises an interesting question. When
does what was once a phrase become a word? When did 'never the less!
become the blurted 'nevertheless' in English? The answer probably is,
When it was used so frequently as an alternative to single words that
it acquired the lexemic label of those single-word alternatives in the
minds of English speakers and listeners. If this is so, raba and kin
ought probably to be given their own lexeme...even at the expense of
complicating the grammar. But we resist this move at this early stage
of our macgrammatical explorations.

Yacc, yacc. An acronym for 'Yet Another Compiler-Compiler*'; a noun when

capitalized, and in these notes, a verb when entirely in lower case.
Yacc is an automatic LR1 parser generator which takes context-free
phrase-structure grammars as input. It was especially designed to make
possible the disambiquation of ambiguous grammars by the use of
"precedence rules" (q.v.), and was published by Stephen C. Johnson and
his associates at Bell Labs in 1975. Yacc uses the "parsing tables" it
generates to find any grammar conflicts and to exhibit them to the
user, to declare the submitted grammar to be "conflict-free" (qg.v.)
when it finds none, and to disambiguate certain types of conflicts
automatically when these exist. If only these types of conflicts exist
in the input grammar, Yacc will still generate a parser for it after
disambiguating it; and of course it will do so for any grammar it finds
conflict-free. Yacc is the centerpiece of LYCES, q.v. All the trial
grammars used in developing the current MacGram were accepted as such
only if they "yacced". That is to say, if, when submitted to Yace, a
grammar was found either to be conflict-free~-all the trial grammars
prior to Trial.l2 were of this class--or to have only "benign
conflicts" of the sort Yacc could disambiguate--Trial.12 and all
subsequent grammars are of this second class--then the Yacc-generated
parser for that grammar was sent on to parse the Corpus. If a grammar
didn't yacc in either of these two senses--both of which produce
unambiguous parsers--it was back to the drawing-board until it did.
The difference between the Trial.ll and Trial.l2 grammars was that
Trial.l2 finally cured what had seemed the incurable problem of
redundant gu's. It did this by removing gu from two allograms in the
Trial.ll grammar that seemed to be the fountainheads of all the "extra
gu-ing". And this made the grammar ambiguous. The redundant gu's were
mostly gone, it turned out; but 7 shift/reduce conflicts had also
appeared. But Yacc's automatic dissolution of these 7 conflicts, by
giving precedence to the shift action in each case, produced a grammar
that parsed the Corpus perfectly. Not only were there no redundant
gu's, but all the virtues of former grammars were preserved as well.
It was the first grammar to do so. (All subsequent explorations have
been "off the Corpus".) So Johnson's 1975 remark that these grammars
are often "better grammars" has certainly been borne out in this case.
JCB, 15 Jun 82



